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Abstract—As a digital image provides such information about a
scene, a disparity map can be yielded by means of stereo images.
This topic was exhaustively surveyed but it remains one of the
most important branches in both computer vision and machine
vision. Most algorithms are organized in a pipeline that starts
with a matching cost step and ends with a disparity refinement.
This paper provides a simple but an effective method to adjust a
disparity map in a more appropriate configuration, i.e. it presents
a disparity refinement technique. It is based on an assumption
that most disparities in a region point to a correct disparity
value for this area. To develop the methodology, we use image
segmentation and support weighted windows. By performing an
evaluation, it shows that this method can increase the robustness
of a raw disparity map even with a lot of noisy parts.

Keywords: stereo vision; adaptive support window; disparity
map; map refinement; disparity methods; image segmentation.

I. INTRODUCTION

Depth recovery is a primary problem in several fields. For
instance, an autonomous vehicle can use the depth of a scene
to move around without collisions. A visually impaired person
can use a computer application developed to help him in his
mobility. Objects can be tracked with no overlap. Augmented
reality can bring better visual effects and so on.

As a digital image provides such information about a scene,
it can also be used for estimating the position of objects in
space, which can be accomplished by stereo imaging. Thus,
for obtaining a depth map, digital images are used to calculate
the disparity between similar points.

A disparity map can be yielded by means of stereo images.
When two or more cameras are used to capture the same scene,
the displacement of the cameras produce a paralaxe which
puts a point in different coordinates of each image plane. The
movement of a point can be followed and its motion shows
how far away a point has changed its position. Hence, when
this displacement is calculated we obtain the disparity among
correspondent points.

In case that all points in a scene have been followed, a
dense disparity map can be produced. On the other hand, if just
some points have been considered a sparse disparity map is
returned. Depending on the application, a sparse or dense map
can be chosen. For instance, for some types of autonomous
robot just points with high disparities that are important. In this
case, a sparse map can be considered whereas points with low
disparities may be discarded. However, an application which
aims to mapping in details a 3D scene, presumably, it will use
a dense map.

Disparity maps are used to estimate the depth relation
among objects in a scene and the depth relation between them

and the camera equipment. Thus, stereo vision systems aim at
inferring disparity maps by processing a pair of images, in a
binocular approach, or by considering three or more images,
in a multiview approach.

Accordingly to Mattocia et al. [1], this topic was exhaus-
tively surveyed. Despite that fact, in a more recent work,
Hamzah and Ibrahim [2] show that the field of stereo vision
remains active in research and development. Yang et al. [3]
endorse it by affirming that nowadays stereo vision is one
of the most important branches in both computer vision and
machine vision with application in different types of fields, as
3D shap measurement and target tracking.

In stereo vision systems, most algorithms are organized
in four steps: (1) matching cost, (2) cost aggregation, (3)
disparity selection and (4) disparity refinement. This pipeline
was pointed out by [4] and a lot of work has been done based
on it.

At the matching cost step, a mathematical model is defined
to measure the dissimilarity value between points. Models
like that are known in the literature as cost functions, match
measures or even as photo-consistency. Absolute Differences
(AD), Squared Differences (SD) and Truncated Absolute Dif-
ferences (TAD) are often reminded.

The cost aggregation step is mainly used in local stereo
methodologies, in opposition of global strategies. In local
methods, the matching cost is calculated over a neighborhood
region which is commonly referred to as support or aggregat-
ing window. They consider the entire set of pixels associated
with the image regions that may be square or rectangular and
may be fixed or adaptive in size [2].

The disparity selection step deals with the task of choose the
most suitable disparity for each point, a common strategy is the
Winner Takes All (WTA). Finally, at the disparity refinement
step, a post-processing technique is applied in the disparity
map to adjust disparities which were wrongly estimated.

Our study focuses on step 4 of the pipeline, which is the
disparity refinement. At this work, we propose a simple but
an effective technique to adjust a disparity map in a more
appropriate configuration. It is based on an assumption that
disparity map regions carry helpful information. As a set of
disparity are allocated in a region, the disparity with more
frequency, i.e, the disparity that mostly appears in a region,
indicates the correct one, with a condition that a region has
similar points. Hence, other disparities in that region can be
discarded. The next step is to find the disparity of these points.
To do that a weighted function is performed for this task.

By performing an evaluation, we can observe that this strat-



egy can improve disparity maps substantially. Even maps with
low accuracy can be enhanced by this method. In addition,
we pointed out that although this proposal is presented in the
context of local approaches, it can also be applied in global
strategies in the same way.

The remainder of the paper is organized as follows. After
briefly reviewing closely related work in Section II, we show
a overview of the technique proposed and we describe our
algorithm for adjusting a disparity map in Section III. The
experimental results and analysis are given in Section IV and
Section V concludes the paper.

II. RELATED WORK

When we observe the field of research in stereo vision
systems, the most prominent area in the disparity map building
is the matching cost step (number 2 in the pipeline). Different
methodologies have been proposed, each one with a new idea
or as an incremental approach. Such studies have made a solid
base that supports computer vision applications in a variety of
real world problems.

Although the number of researches in stereo vision are
amazingly high, keeping up with the new trends is the hardest
part. Hamzah and Ibrahim [2], in a recent survey, showed
that almost 200 original papers are published per year only in
IEEE Xplore database. This fact was also observed in an older
survey. Lazaros et al. [5], when analysing the stereo vision
field, pointed out that new approaches were being presented
every year and such expanding volume of work was making
it difficult for those interested to keep up with it.

Kumaru and Kaur [6], by discussing this point, concluded
that though a large number of methods have been developed
for calculating disparity, the problem is still ill-posed with ma-
jor challenges as photometric variations, untextured/repetitive
regions and high density of noise.

These problems are also common challenges in the other
disparity map pipeline steps. If a difficult task is prolonged,
then it may be treated in another moment. Thus, at some
point, this protracted task will culminate in the refinement step.
Whereas the final goal is to obtain an accurate map, this last
step is often applied to obtain robustness.

The refinement procedure takes a raw disparity map to per-
form some manipulation with this data. Thus, a data analysis
is conducted to define a methodology capable to deal with
some considered aspects, as border preserving and occlusion
handling.

Depending on the quality of this raw map, a final result
may achieve considerable success. It is because an adjustment
takes this raw map into account, so to produce a robust map
from a degraded one is not a trivial question.

This adjustment envolves a set of procedures which are
based on hypotheses, heuristics or simple observations. How-
ever, unlike the matching step, the refinement one is not very
often discussed, at least with emphasis. Proposals are made
but they are presented briefly in a section of a paper, i.e, they
are put in the background.

Left to right consistency-check is a frequent refinement
process that is applied in a raw disparity map. It consists of
cross checking two or more disparity maps. For instance, to

apply this methodology in a binocular approach, two disparity
maps must be yielded, so each one of the image pair is used
as a reference image, one at a time.

This consistency-check method deals with areas that are
occluded. Points that are not visible may be detected and
labeled as unknown disparities. After that, another technique
can be used to fill in these occluded pixels. This method
can improve a raw map by observing neighboring points.
Therefore, if a disparity of a point is unknown, probably the
neighboring points may tell what is.

Yang et al. [3] explains this method. The disparities of
occluded pixels on the left disparity map are assigned to zeros.
The occluded pixels on the left disparity map are filled with
the lowest ones of their horizontal adjacent disparities or with
a weighted median filter that is further used to eliminate the
stretching effect caused in the horizontal filling.

The same is explained by Rhemann et al. [7]. When an
occluded pixel is detected, it is assigned to the lowest disparity
value of the spatially closest non-occluded pixels which lie on
the same scanline (pixel row). However, they point out that
this simple occlusion filling strategy can generate streak-like
artifacts in the disparity map. Thus to remove them, while
preserving the object boundaries, a weighted median filter can
be applied to the filled pixels.

This method is not a recent one. In a classic stereo vision
paper, Scharstein and Szeliski [4] presented it by saying that
occluded areas can be detected using cross-checking (com-
paring left-to-right and right-to-left disparity maps). Although
they didn’t use it in their experiments, they confirm this
method can be applied to remove spurious mismatches.

Hosni et al. [8] used this method with a simple modification.
They observed that since occlusion occurs in the background
of an image, the occluded pixel can be assigned to the
minimum value from both disparity maps. According to them,
this strategy also generates horizontal streaks in the disparity
map and hence it demands post-processing on the filled in
pixels.

This disparity map combination was also used by [9]. To
improve the accuracy of their results, they calculated a depth
image for both stereo images and combined them to eliminate
some final artifacts. They assumed that artifact faults only
occur in one of the two views, so they took the minimum
of both disparity maps.

According to Hirschmuller and Scharstein [10], the refine-
ment step is applied to reduce the overall errors, which in turn
yields improvements of the final result. They also performed
the left to right consistency-check in their experiments. It was
used for invalidating occlusions and mismatches where invalid
disparity areas were filled by propagating neighboring small
disparity values.

Apart from that method, other methodologies can be found.
Hirschmuller et al. [11] proposed a border correction filter
that modifies the disparity image by horizontally shifting
assumed object borders. Wang et al. [12] developed an algo-
rithm using the MRF framework, image inpainting technique
and image color contrasts to eliminate holes and misaligned
pixels. Hirschmuller [13] presented post-processing steps for



removing wrong disparities, recovering from specific problems
of structured environments, and the interpolation of gaps for
preserving discontinuity.

Mattocia el at. [14] proposed a powerful method that uses
adaptive weights for classifying pixels based on geometric and
photometric constraints. It takes a pair of images and a raw
disparity map as input, then the plausibility of each point is
evaluated by considering the relation among points in the same
aggregating window, points between images and the original
disparity.

In this brief section, some strategies of disparity enhance-
ment were pointed out. It doesn’t exclude other methodologies
but it shows that the most discussed method in this literature
is the left to right consistency-check. This is most likely due
to its simplicity for implementing and ability to find occluded
points with efficiency. However, other methods are proposed
but sometimes with no great significance.

III. PROPOSED APPROACH

We start by analysing a raw disparity map. Fig. 1 shows a
map that is very noisy in some parts of it. It was made by a
simple cost aggregating (CA) methodology that can be called
as fixed window (FW) method. It is the simplest CA strategy
that uses an aggregating window and it is at the foundation
of stereo vision systems. Besides, this map was also yielded
by using a simple cost function that is the sum of absolute
differences (SAD).

(a) (b)

Fig. 1: Disparity maps: (a) a raw map and (b) a ground truth
map.

This simple form, made by FW method and SAD cost,
structures a method that has some advantages. First, it is easy
to implement. Second, it runs fast in a computer. Third, it
is parallelizable. Four, by using a small window it preserves
borders and by using large windows it reduces noise.

On the other hand it has some disadvantages. One of them
is that it fails in textureless regions. It consideres that points
at the same window have the same disparity. Furthermore, the
best window size needs to be found empirically and it produces
noisy maps caused by mismatches.

In spite of the disadvantages, we take the advantages as a
motivation. Thus, our strategy is prepared by considering a
raw disparity map which has noisy parts. Probably, a better
disparity map, yielded by a robust stereo method, produces
better results but the simplicity of the FW method and its
advantages justify an investigation.

Fig. 1a illustrates a region that has a group of wrong
disparities. Similar pixels coexist in this area and because of
that, FW method fails in a lot of points. However, when we

analyse these disparities we can see that most of the values
are pointing to a correct one. Fig. 2 shows an histogram plot
which confirms our analyse by comparing this map region with
the same region in the reference map (ground truth), Fig. 1b.

(a) (b)

Fig. 2: Map analysis: (a) disparity map and (b) related his-
tograms.

In this way, if in a certain region a disparity method hits
more than fails, we can use it. Unfortunately, it is something
that we don’t know because the correct disparity is still
unknown. But if we believe in it, we can propagate this
supposed correct value even knowing that this is not true all
the time. Our methodology starts with this belief.

To identify a region, a segmentation technique may be used.
In stereo vision systems, mean shift algorithm [15] is widely
employed. It was used to obtain great results in [9], [16]
and [17]. We use it to apply a segmentation in the reference
image. When we obtain these segments we use them to localize
regions in the disparity map. Fig. 3 shows a segmented image
and its corresponding disparity map labeled based on these
segments.

(a) (b)

Fig. 3: Image segmentation: (a) reference image and (b)
disparity map.

After that, the method calculates the most common value
for each segment. It is a simple equation that is show in Eq.
1. For each segment S with the identifier i into the disparity
map D, (Si ⊂ D), it calculates the mode of all n segments
and the results are stored in m.

mi = mode common value in Sn
i=1 (1)

Moreover, each point of the disparity map that belongs a
certain segment is evaluated, accordingly with the previous
mode contability. In Eq. 2, a disparity value in D with the
coordinates (x, y) is tested. In case of this value is in a range
test, the mode value m is assigned for this point. Otherwise, it
is assigned with 0 that represents a unknown disparity. In this
equation, t is a threshould defined by a user that is used to
approximate disparity values to the segment’s mode. Besides,
it considers that each disparity value is in a segment S with
the identifier i.



D(x, y) =

{
mi if D(x, y)∈{Si} ∈ [mi − t,mi + t],

0 otherwise
(2)

When applying the above equations, a disparity map is
returned. At this time, disparities that are far away from their
segment mode value are considered as unknown. The next
step consists of filling these holes in, so a weighted filter is
prepared to evaluate the plausibility of each possible disparity.

Yoon and Kweon [18] introduced a support weighted win-
dow to be applied in the stereo matching problem. Their
methodology considers the color similarity between points
and their space distance. A window is defined and a point
located in the middle of this window is the principal point. The
surrounding neighbors are compared with the principal point
by calculating their difference of colors and their geometric
distance. This strategy was used in [14], [19], [20] among
others and investigated in [8].

The color proximity constraint between a principal point p
and its neighbor point n within a support is given by:

fc(∆cpn) = e−
∆cpn
γc (3)

The color distance ∆cpn represents the Euclidean distance
between the colors of p and n in an image I as

∆cpn =

√ ∑
j∈r,g,b

(Ij(p)− Ij(n))2 (4)

In the same way, spatial proximity constraint is evaluated
accordingly to:

fs(∆spn) = e−
∆spn
γs (5)

the spatial distance ∆spn represents the Euclidean distance
between the coordinates (x, y) of p and n as

∆spn =
√

(px − nx)2 + (py − ny)2 (6)

γc and γs refer to a constant of color similarity and
a constant to adjust the spatial distance term, respectively.
fc(∆cpn) and fs(∆spn) represent the strength of grouping
by color similarity and by proximity.

Color and spatial constraints are combined and the final
support weighted window is given by

W (p, n) = e−(
∆cpn
γc +

∆spn
γs ) (7)

Hosni et al. [8] investigated the Eq. 7 and showed that the
spatial constraint can be omitted with very little difference on
the quality of results, as

W (p, n) = e−(
∆cpn
γc ) (8)

In our method, we use the support weighted window with
an adaptation. It is only applied in unknown disparities so a
principal point in a window is a point of disparity that we
want to discover. Each neighboring pixel that has a disparity
value is evaluated according to the previous equations. Thus,

Fig. 4: Points in a disparity map D have their own weight w.
Each segment is painted didactically (in red, green and blue).
Weights in D1, D2 and D3 are summed separately. The best
value is used to set the disparity in the principal point p.

the weights of each pixel that are in the same disparity are
accumulated. Fig. 4 helps in the explanation.

Based on the color reference image, the photometric and
geometric constraints are calculated and each point of the
window has a weight w. Besides the weights, we know some
disparities. In Fig. 4, each color represents a known disparity,
except for a white color point that represents an unknown
disparity and because of that these points don’t have a weight
w. Thus, the computed weights that are in the same disparity
are summed up as in

Ωd∈{dmin,dmax} =

n∑
j=1

wij (9)

where dmin and dmax are the range from minimum to
maximum disparity and Ω is the accumulated sums. Hence, a
disparity optimization is performed to select the best disparity.
It is given by

D(x,y) = argmax(Ω) (10)

where (x, y) are the coordinates of the unknown disparity
in the disparity map D. Based on the best value from Ω, its
disparity value is assigned to D.

IV. EXPERIMENTAL RESULTS

In this section, the results and the organization of the
experiment are presented. Four image pairs were selected from
the Middlebury dataset [21]. Each pair has its own ground
truth that was used to evaluate the results. The methodology
followed the specifications of [4].

In Table I, parameters ALL, NOCC and DISC are defined
according to the Middlebury Stereo Evaluation - version 2
[21]. Although this version is no longer active, it is still being
used, as in [22]. Some evaluation masks are provided and
they are used to remove pixels that are not considered in the
statistics. ALL is the error computed on the whole image,
NOCC is the error computed on the whole image excluding
the occluded regions and DISC is the error computed within
the discontinuity regions [14].

In the test cases, raw disparity maps from FW method are
used as input for the proposed methodology, referred to as
segment consistency-check (SCC).

A 3×3 aggregation window was used to build raw disparity
maps and the SAD cost was used as a measure of stereo
matching. The SCC method used t = 1 for Eq. 2, γc = 23
and γs = 14 for Eq. 7 (and for Eq. 8).



In our experiment, we test both strategies to fill in unknown
disparities: with two constraints (color and spatial proximity)
and with only a constraint (color and no spatial proximity). In
case of using no spatial constraint the method is referred as
SCCNoSpatial.

Besides that, a 39×39 window was defined for the support
weighted function. To find the best window size and its corre-
sponding γs term, we followed the methodology proposed by
[20]. The best parameters found for Tsukuba image pair were
used in all tests.

Table I shows the accuracy of the proposed method. The
SCC method decreased the percentage of bad pixels in the
three considered parameters. For instance, the bad pixel error
in Tsukuba image pair was reduced substantially from 20.81
to 4.41 percent in the ALL parameter. The same occured in
NOCC and DISC parameters.

Table I still shows that SCCNoSpatial obtained important
results, especially in Tsukuba and Cones images. However
SCC with both constraints obtained better results in DISC
parameter.

The experiments were made in a notebook with Core i5-
460M 2.53 GHz CPU and 4 GB RAM, and no parallelism
technique was utilized. As for the execution time, the whole
process (FW + SCC) required 27.81 seconds on Tsukuba (0.53
and 27.28 seconds, respectively). In the other image pairs, we
report 51.63 seconds for Venus, 75.05 for Teddy and 75.08
for Cones in the overall process.

A qualitative analysis shows an evident improvement
brought in by the proposed methodology compared to the raw
disparity maps. Fig. 5 shows the disparity maps to each image
pair and the disparity map improvement with the SCC method.
The first column from Figure 5 corresponds to the original
image. The raw disparity maps are in the second column. In the
third column, there are maps after applying Eq. 2. The fourth
column shows the final result and the last column displays the
ground truth.

We extended this evaluation and it was applied in a disparity
map produced in a pixel based technique (i.e, without the
second step in the stereo vision pipeline). Table II shows the
results. Again, SCC method performed well and increased the
robustness by reducing the disparity error. A visual result is
shown in Fig. 6.

V. CONCLUSION AND FUTURE WORK

The stereo vision field is an interesting and challenging area
of research. Surveys have shown that a considerable number
of researches are being developed and a set of papers are being
produced every year.

One of them was prepared by Scharstein and Szeliski [4]
which brought a taxonomy, evaluation metrics, rectified stereo
images and ground truth images within a web platform. The
pipeline proposed by the authors has influenced a lot of work
especially in the cost aggregation step.

However, in this work we explore step 4 which is the dispar-
ity refinement. A methodology was proposed and experiments
were performed. Our approach is based on disparity points
within a segment that can reveal the appropriate disparity
value for this area. Thus, the most common disparities can

be propagated. By doing this we eliminate possible wrong
disparities and we used a support weighted window to find
the best disparity for the unknowns.

Experimental results show that this method can increase the
robustness of a raw disparity map even with a lot of noisy
parts. Thus, when the SCC method is applied in a raw map
produced by the fixed window (FW) method, the disparity
errors are reduced in an important way as to be worthy of
attention, as shown in Tables I and II.

In the next phase, we intend to perform the SCC method
in a more recent dataset as version 3 of the Middlebury
Stereo Evaluation which has more complex scenes. Besides,
raw disparity maps produced by different methods can be
investigated, for instance, maps produced by adaptive support
windows methods. Thus, we could observe whether the SCC
method has major influence in their results. Furthermore,
inpainting techniques could be investigated to select the best
disparity in big unknown areas. Likewise, textureless regions
could be found previously to be treated carefully because
stereo vision methods often fail in these areas.
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